If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x=774
We move all terms to the left:
2x^2+8x-(774)=0
a = 2; b = 8; c = -774;
Δ = b2-4ac
Δ = 82-4·2·(-774)
Δ = 6256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6256}=\sqrt{16*391}=\sqrt{16}*\sqrt{391}=4\sqrt{391}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{391}}{2*2}=\frac{-8-4\sqrt{391}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{391}}{2*2}=\frac{-8+4\sqrt{391}}{4} $
| 5g+25=75 | | y=4+4(-2)-9/2 | | 4=m/3+2 | | 4(0.5n-3)=n-0.25(12—8n) | | 1028+(-3x)=62 | | 11x2+44x-11=0 | | 8x-5+6-2x=59 | | 2x+10≤≤=40 | | .125(p+24)=9 | | H=90+-16t | | 6x-9+1=10 | | p=10000/(+0.50)4 | | k/3+3=2 | | 4f=3f-6 | | p=1000/(1+0.05)4 | | (x-9)(x-9)+2x(x-9)=(4+x)(4-x) | | H=2(x-5) | | (2x+1)*2=81 | | (x)(x)-10x=14 | | 5(x-2)-3(-x+2)=-(x-1)+1 | | 0.8(b-5)=3.2 | | 3(x+5)-10=185=90 | | -8x-2+3x=4-4x+8 | | _x(-4.2)=15.96 | | 4x–6=30 | | 3(m+4.2)=25.2 | | x*x*x-3x-26=0 | | 4x–4=–8 | | X+89=19+x | | 2x+21+52+11x-88= | | 2x(2)-3x=5 | | r=2.3=40 |